Question			Answer	Marks	Part Marks and Guidance	
1	(a)	(i)	$\mathbf{a + b}$ or $\mathbf{b + a}$	1		Capitals, eg A and B, do not score
		(ii)	b-a or -a + b	1		
		(iii)	$\frac{1}{2} a+\frac{1}{2} b \text { oe }$	2	M1 for $\overrightarrow{\mathrm{OA}}+\frac{1}{2} \overrightarrow{\mathrm{AB}}$	$\text { eg } \mathbf{2} \text { for } \mathbf{a}+\frac{1}{2}(\mathbf{b}-\mathbf{a})$
	(b)		$\mathrm{O}, \mathrm{M}, \mathrm{C}$ collinear/all on a line M is midpoint of $O C$ oe	$\begin{aligned} & 1 \\ & 1 \end{aligned}$		It is an equal distance from O to M as from M to C OC is double OM OM is half of OC

| 3 | PQS or PSQ $=\frac{180-30}{2}(=75)$
 Tangents and either 'point' or 'equal'
 QRS $=75^{\circ}$
 Alt(ernate) seg(ment) |
| :--- | :--- | :--- |

M1	Allow Q , no label etc if unambiguous	'Isos triangle' alone gets 0.
		75° on answer line scores 2 if
1	their PQS or PSQ	unambiguous
A1FT		
$\mathbf{1}$	Or	Condone 'opposite' segment

Question		Answer	Marks			
$\mathbf{4}$	(a)	$\binom{6}{-6}$	1		Part Marks and Guidance	
	(b)	(i)	$\binom{2}{10}$	2	Or M1 for $\binom{3}{7}+\binom{-1}{3}$	If fraction lines' seen penalise 1 mark first time only
		(ii)	$\binom{4}{-12}$	2	Or M1 for $-4\binom{-1}{3}$	

$\mathbf{5}$	(a)	Correct point marked A	1		Allow BOD if neither labelled
	(b)	Correct point marked B	1		
	(c)	$\frac{13}{3} \mathbf{a}-6 \mathbf{b}$ oe	3	B1 for unsimplified version of $\frac{13}{3} \mathbf{a}$	Condone $\mathbf{a} \frac{13}{3}$ etc. Condone 4.33(333..)

Question		Answer	Marks	Part Marks and Guidance	
6		Correct proof with working and reasons - AD stated correctly - Attempt at stating $\pm P Q$ or $\pm Q R$ - Method for \pm PS or \pm SR seen - $\mathrm{PQ}=$ (or parallel to) SR or $Q R=$ (or parallel to) PS stated - Convincing correct conclusion As above but conclusion not convincing or error in method seen $\overrightarrow{\mathrm{AD}}$ found with working or $\overrightarrow{\mathrm{AD}}$ and one side of PQRS stated without working or 2 sides of PQRS stated without working ie 2 of the bullet points No correct work seen	5 4-3 2-1 0	For the lower mark - method will be missing or incorrect and conclusion not convincing ie 3 of the bullet points For the lower mark - one side found ie 1 of the bullet points	$\begin{aligned} \overrightarrow{\mathrm{AS}} & =\frac{1}{2} \overrightarrow{\mathrm{AD}} \\ & =\frac{1}{2}(2 \mathbf{e}+2 \mathbf{f}+2 \mathbf{g}) \\ & =\mathbf{e}+\mathbf{f}+\mathbf{g} \\ \overrightarrow{\mathrm{PS}} & =\overrightarrow{\mathrm{PA}}+\overrightarrow{\mathrm{AS}} \\ & =-\mathbf{e}+\mathbf{e}+\mathbf{f}+\mathbf{g} \\ & =\mathbf{f}+\mathbf{g} \\ \overrightarrow{\mathrm{QR}} & =\overrightarrow{\mathrm{QC}}+\overrightarrow{\mathrm{CR}} \\ & =\mathbf{f}+\mathbf{g} \end{aligned}$ Opposite sides equal length and parallel therefore PQRS is a parallelogram

